You'd Prefer An Argonaute

2015 Breakthrough Prizes in Life Sciences

Posted in Media, Prizes by YPAA on November 13, 2014

This year four of six prizes went to RNA researchers. Crazy Gary Ruvkun (Harvard) and Victor Ambros were recognized for their work discovering miRNAs in nematodes. (Again, the debate could be raised of how plant researchers who studied PTGS in the early 1990’s might ever be recognized for their critical contributions to early small RNA discoveries.) At a symposium celebrating this year’s prizes, held at Stanford on Monday, Gary was classic Gary, at one point in responding to a question about his mentoring of trainees, declaring, “I should just quote Charles Barkley, who said, ‘I ain’t no role model’.”

The rich tech guys scooped the Swedes in honoring Jennifer Doudna and Emmanuelle Charpentier for their work on CRISPR. It’s only a matter of time, of course, before a Nobel honors CRISPR, but the Breakthrough Prize committee has clearly wasted no time in recognizing its importance for biology and medicine today and into the future. They know a breakthrough when they see one.

And regarding the elaborate awards ceremony held within a bedazzled Hanger 1 at the NASA Ames Research Center—in the heart of Silicon Valley—French Laundry catering, Seth MacFarlane hosting, Cameron Diaz and Benedict Cumberbatch pleasing the masses/cumberbitches? Pretty different style than those staid Nobels. I guess there’s a new role model in town.


iBioSeminars: RNA Structure, Function and Recognition (part I)

Posted in Media, Talks by YPAA on October 25, 2014

iBioSeminars: RNA Structure, Function and Recognition (part II)

Posted in Media, Talks by YPAA on October 25, 2014

iBioSeminars: RNA Structure, Function and Recognition (part III)

Posted in Media, Talks by YPAA on October 25, 2014

iBioSeminars: microRNAs (part I)

Posted in Media, MIT, Talks by YPAA on May 26, 2014

Tagged with: , , ,

iBioSeminars: microRNAs (part II)

Posted in Media, MIT, Talks by YPAA on May 26, 2014

Tagged with: , , ,

iBioSeminars: microRNAs (part III)

Posted in Media, MIT, Talks by YPAA on May 26, 2014

Tagged with: , , ,

Extreme Tissue Regeneration

Posted in MIT, Science Journalism, Uncategorized by YPAA on May 26, 2014

Read my recent piece on the fantastical flatworm planaria here, in OZY magazine.

The neoblasts (pink) of a planarian.

The neoblasts (pink), a type of stem cell, of a planarian.

Hidden Patterns of Birds and Insects in Motion (The Atlantic)

Posted in Uncategorized by YPAA on February 23, 2014

Spherical Nucleic Acids (SNAs)

Posted in Media by YPAA on February 6, 2014

Science of the flying V formation in birds

Posted in Evolution, Gallimaufry, Media by YPAA on January 15, 2014

Tagged with: , , ,

Richard Pryor examines predator–prey relationships

Posted in Evolution, Gallimaufry, Media by YPAA on January 4, 2014

Evolution x SoCal Museum

Posted in Evolution, Scientific Publishing, Travel by YPAA on December 29, 2013

The Huntington in San Marino, CA has big, bountiful gardens, classic american and european art, and a supremely impressive and world-class library, containing among other things, an original copy of the first scientific journal, ever, from the 1600’s. A wonderful permanent exhibit in the library, Beautiful Science, showcases, chronologically, many important historical documents/texts and instruments that were key to advancements in four fields: Astronomy, Natural History, Medicine, and Electricity. Within the Natural History section lies a most excellent, succinct historical primer on evolution. I snapped some photos, and for educational purposes, I am reprinting highlights below. Of course if you’re in LA, I recommend setting aside half-a-day to see the Huntington in person.


Aristotle (384—322 b.c.)

[Collected works]

Venice, 1496

Aristotle was opposed to evolutionary ideas, believing that animals and plants were eternal and would not change or become extinct because they were created in their ideal form. But he was also the father of the science of classification—which was to be a critical element in the development of evolutionary theory. This section of his work, de anima, is a major treatise by Aristotle on the nature of living things. His discussion centers on the kinds of souls possessed by different kinds of living things, distinguished by their different operations.


Jean Baptiste Lamarck (1744—1829)

Systeme des animaux sans vertebres (System of invertebrates)

Paris, 1801

Lamarck formulated the first comprehensive and systematic theory of evolution, which presented man as its perfect end product. He theorized that all life-forms changed and progressed to greater complexity and that an animal’s use or disuse of a particular physical trait would make it more or less likely to be passed along to its offspring.

He replaced a static view of the world’s past with a dynamic one in which not only species but also the entire system and balance of nature were constantly in flux.


Georges Cuvier (1769—1832)

Recherches sur les fossiles (Research on fossils)

Paris, 1812

Cuvier was the founder of comparative anatomy and could identify many different animals from a single tooth or bone. He was soberly empirical in his study of fossils and reached a number of accurate conclusions about the relationships among different kinds of animals. His work identifying similarities among fossils helped evolutionists build a case for the descent of animal life from a common ancestor.



Charles Darwin (1809—1882), John Gould (1804—1881), and Robert Fitzroy (1805—1865)

The zoology of the voyage of the H.M.S. Beagle

London, 1832—36

During his five years on the HMS Beagle exploring South America and the Galapagos Islands, Darwin’s thinking about evolution changed. He was deeply influenced by the evidence of the specimens he observed and collected on the trip. The voyage turned a rather bookish young man fresh from the halls of Cambridge into a rugged, deeply knowledgeable, and worldly naturalist.

The drawing shown here was made by John Gould, a British artist and naturalist. Gould demonstrated that the finches Darwin collected on various islands in the Galapagos were 12 distinctly different species, all new to science.



Charles Darwin (1809—1882) and Alfred R. Wallace (1823—1913)

“On the tendency of species to form varieties”

Journal of the proceedings of the Linnean Society

London, 1858

This jointly-authored paper was the first description in print of natural selection—a critical aspect of evolution.

Darwin worked on his theory of evolution for decades but was nearly beaten to publication by Wallace, a fellow British naturalist who separately conceived of the idea. Wallace’s insight into evolution’s key properties came to him in a rush while he lay in bed in the grip of malarial fever in Malaysia thinking about Thomas Malthus’ idea of positive checks on human population growth.


Charles Darwin (1809—1882)

On the origin of species

London, 1859

This iconic book changed the very fabric of our understanding of the natural world. Darwin proposed that the world held abundant evidence that species had changed over time and offered up a key mechanism for that change. He called it “natural selection,” a process that led the best adapted individuals of a species to survive and reproduce, and thus to pass along their traits. As renowned 20th-century biologist Ernst Mayr noted, “There is probably no more original, more complex, and bolder concept in the history of ideas.”

The beauty of Darwin’s work lay, ultimately, in both its originality and its persuasiveness to an often-hostile audience.


Gregor Mendel (1882—1884)

Versuche uber Pflanzen-Hybriden (Experiments on plant hybrids)

Brunn (now Brno in the Czech Republic), 1865—66

By crossing strains of peas to produce specific characteristics consistently (such as a wrinkled or smooth exterior), Mendel demonstrated that the inheritance of physical traits follows particular laws.

First published in German in an obscure local natural history journal during Darwin’s lifetime, Mendel’s work was not widely accepted until the dawn of the 20th century.


William Bateson (1861—1926)

Mendel’s principles of heredity

Cambridge, England, 1909

The principles that govern the inheritance of characteristics were not worked out in Darwin’s time. That process did not begin until 1900, when researchers rediscovered, reinterpreted, and extended the botanist Gregor Mendel’s earlier work on genetics.

Biologist William Bateson was one of Mendel’s greatest supporters, and this book is a crackling, impassioned reply to skeptics of Medelian genetics. The peas illustrated here demonstrate Medelian principles of inherited characteristics.



James D. Watson (b. 1928) and Francis Crick (1916—2004)

“Molecular structure of the nucleic acids”

Nature magazine

London, 1953

Along with researcher Rosalind Franklin, molecular biologists Watson and Crick jointly discovered the structure of deoxyribonucleic acid, or DNA, in 1953. This paper is the first announcement of their breakthrough.

Identifying the structure of DNA was perhaps the most significant advance in biological research of the 20th century. From tracing the path of human evolution to helping curing diseases, our ability to analyze DNA has led to extraordinary scientific progress.